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METHOD OF DETERMINING OPTIMAL SPACECRAFT

TRAJECTORY CORRECTION

V. A. Kuz'minykh

ABSTRACT. We examine an optimal spacecraft
trajectory correction method consisting of de-
termining the optimal energetics and strategy
for interplanetary spacecraft trajectory correc-
tion. Calculation result\s for the Earth-Jupiter
flight trajectory are presented. The feature
which distinguishes this method from those de-
veloped previously involves account for orbit
determination errors based on trajectory meas-
urements and the correcting impulse execution
errors.

Introduction

Spacecraft [SC] which are launched at the present time are /

equipped with motion parameter measurement systems, orientation and

stabilization systems, and power 'plants which permit control of the,

motion in outer space. One of the control modes is trajectory cor-

rection - impulsive variation of the SC velocity accomplished with

the objective of correcting the deviations of the basic trajectory

parameters from their values corresponding to the nominal design

flight trajectory.

Numbers in the margin indicate pagination in the original foreign
text.



In general form, the correction problem can be formulated as

follows. As a result of SC motion obser\vation, we establish on the

basis of trajectory measurements the discrepancies between the para-

meters of the actual and nominal trajectories. If the discrepancies

exceed the allowable values, then for specified or variable engine

firing times we must determine the direction and magnitude of the SC

velocity change, as a result of which the indicated discrepancies

are reduced and will not exceed the allowable values.

The energetic characteristic of the correction is the total

impulse. By correction strategy, we mean the rule specifying the

correcting impulses on the basis of trajectory measurements and SC

trajectory prediction.

2. Basic Parameters and Relations

On the basis of [1], we introduce the correcting and corrected

vectors and determine the generalized linear correction, with account

for correction execution errors.

We denote by IN the set of indices {I.2...). With each element k

of the set IN, we associate the Euclidean space Kk of dimension nk  /

- the space of the correcting vectors at the point k, whose elements

are the vector wVx= K--'wnwith the norm:

and the vector vi characterizing the Vk "execution" error.

For each k, we examine the Euclidean space - --5)\of constant

dimension m, in which there appear the corrected parameter vectors:

If the matrices of dimension Ak are given (the methods for calculat-

ing the Ak matrices were presented in [1, 21), the N linear mappings
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~+- RK(+&VJ (2)

determine the generalized and linear orbital correction. To every k,

we place in correspondence the state vector :{ - .. . The

components of the ector xk may be, for example, the planetocentric

coordinates of a SC performing an interplanetary mission, and the

deviation from the normal value of the time of SC approach to the

target planet after application of K correction impulses. In addi-

tion, we introduce the initial state vector ...,We denote

the nominal value of x 0 by b. We assume that the upper bounds

(L~ -- n. t) of the 'mbduli'of the compohehts of the vector x - b are0

known a priori, the inequalities I- Udi in this case define the re-

gion R We examine as the corrected parameter vector:

From (2) and (3), we obtain the equalities:

We denote by - the estimate of the vector ~ , determined on /5

the basis of trajectory measurements on the time interval (0 .K

Then the relation is valid

in which T,,- is the error of determination of the vector 31oI,

Application of optimal orbit determination strategy [31 permits

finding . " m 7- - where is the ensemble of all possible meas-

urement compositions for the given strategy, and pj are bounded

errors of measurement of the function -o V..W, which depends on the
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parameters oi:i which determine uniquely the trajectory and the a

priori information on these parameters. Let us examine the set

Rg of vectors &- , for the components of which the inequality is

satisfied:

I(6)

We further let f 4vr-l-be the "sighting" vector for the kth correc-

tion impulse, connected with the vectors --Y-V, and the matrix Ak
by the relation:

h + y _ (7)

From (5) and (7) follows the equality:

- JYX- 7-j (8)

We assume that the components of the vectors are represented as:

where _ is a random vector of dimension n k From the various com-

ponents of the vector 3.. , we form the vector '"'"

and consider that its components are bounded:

,.e . .i :(10)

The inequalities (10) define the region Ak in V - the Euclidian /6

space measure.

By Vk, we mean either [4] the minimal with respect to norm (I)

(with the condition nflm , or the solution of (8) determined

using-the Cramer rule (with m*frn c m-ni ) :

K(11)

-LI- - : - " - - -_ :-. - ( i



in which Ak is a known matrix of dimension nk * m, Sk is a matrix

of dimension m • m, expressing the nk free components k:

E ,, 0 n (m- rl K _)

where En,O (nKl Im-n),_l0(im-r m)_ respectively, are a nxn x unit matrix and

n ni--,\ null matrices. We shall assume that trajectory measurements

processing is accomplished by the maximal likelihood method. The

computational formulas for the estimate IT-j and covariation matrix"

iiK((.,. are presented in [5] and [1]. As is known, the mean-square

errors of the components of the vector EK-, are:

We introduce the following sets of vectors SX,_ :

3. Optimality Criterion

It follows from (4 ), (9), and (11) that -k and Vk depend on the

parameters 3Co,S~o....- Zji.. Y, 1, while xk also depends on -

In Rm we specify the region L (cC )2 with the aid of the inequali-

ties i -- ,q the maximal allowable discrepancies. Under the

assumptions made, we determine for jo-,, - ~ - - - . eAK the best

guaranteed total correction impulse estimate:

r mnax. mLanrrx ux mCxr'LuxmLj
-.-- .ox o o - , , . , . -, * ' (12)

with the conditions on the choice of Zj..J for each given x: /
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Estimate (9) corresponds to successive SC trajectory correction with

account for the errors characterizing:

(1) SC injection into orbit;

(2) determination of SC orbit on the basis of trajectory meas-

urements;

(3) execution of the correcting impulses.

Control .effectiveness is characterized by selection of the para-

meters§ -Z :--r.)/_ . Let us examine the following zn selection pro-
n

cedure, specifying the correction strategy. For the yo and

6(Gk') r determined as a result of trajectory e masure ent. pro-

cessing, we first calculate the zi for which:

for _.S o\ and 2,... satisfying the inequalities

where M is the mathematical expectation symbol. Then in order to

determine 0.. -,-\ and. sii i\, and also in order to calculate

4... (, '.. . , we find the zn  for which

for , satisfying the inequalities:

-A--- . \

The z selection problem is mathematically analogous to the Problemn

(12) - (13).

6



We note that calculation of In reduces to minimization of wN /8

with respect to zN

4. Optimal Parameter Theorem

Inequalities (13) define the set Qji i of dimension N • m, for

which the lemma holds: the set :Qj(.. ) is convex. For definiteness,

in view of the convexity of Q#, we shall consider that in _ there

is inscribed the "beam" B°{j- .( B)Q : the set of vectors

* I /1 , for the components of which the inequalities are satisfied

In this case, E BIi o. B ,

( ,\is the direct sum of the sets BKoQro), : I~.-.

Z - for k 3 k. We denoteethe boundary of the set k by SK*

In finding I, we perform minimization with respect to zk on

the sets b o\.

We denote by 2, 1 ,and Ak, the sets of boundary points of the

regions oR -i\ and Ak.

On the basis of [61 - [9], the mathematical solution of the

problems posed in Section 3 leads to the following theorems.

Theorem 1: the extremal value of I is reached for

Theorem 2: the extremal value is reached for

7



Theorem 3: for u r- l- -> al '- with the conditions Xn4,

the inequality. ~~ 1 is satisfied.

5. Algorithm for Calculating the Optimal Correction

Energetics Estimate

Let us examine two-impulse (N = 2) two-parameter (m = 2) inter- /9

planetary SC trajectory corrections in which the engine can be

oriented arbitrarily (nk = 3). We shall consider that the transfer

time T is fixed.

In accordance with [2], we write (11) in the form

0) (f)c' 1 ( (2 i2 (14)

where Gk and Fk are equal to

are, respectively, the first and second rows of the matrix Ak •

It follows from vector algebra that the equalities are satisfied

n §< ..4 (-1.5 1) Z <,W=

We take the following correcting impulse execution error model [10]:

(16)

where Ek is the vector of correcting velocity direction angular

error, k is the proportional error in the correcting increment

magnitude, and l -1,2 :I With the notations used,

{E , ,, . We note that each set -2~ _ )consists in the

present case of four vectors and Ak consists of 16. From (15), (14),

(8), (4), and (16), we obtain:
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.x -.) - - - ( 1 8 )

From (17) and (18), we obtain: /10

-- -C-) ---_ .- --),, , ,, (2 0 )

On the basis of Theorems [1, 2] and the Relations (1), (14), (19),

(20), we examine the following computational algorithm.

For each 56 2\on the basis of (19) and (20), we determine the

size of the set _ for each measurement and plot the "beam"

\oX, c j. We then apply the, sequential maximum calculation method

with use of interpolation with respect to zl on the setiBlfol.(we

denote the set of interpolation nodes o\). The calculations are

made for Xo.. , using the following scheme.

d- for rax mirt max m U [,- )3.
interpolation, , /1k , 82yo
w. respect to . -

6. Numerical Examples

The quantity I was determined for given nominal SC trajectory

from the Earth to Jupiter with launch data August 15, 1976 and T =

448 days. As the corrected vector, we selected (C, n) in the target

planet picture plane [2].

The initial numerical data are presented in Tables 1 and 2: /11

t l and t 2 denote the times of application of the first and second

correction impulses in days, the elements of the matrix Ak, denoted

by A (11) ... A (23), were calculated along the nominal trajectory

9



TABLE 1.

tJt Ais] 412 A2 33 A A23 A J2AA[237

60 -1,415 2,017 0,90C 0,044 -0,952 2,192

180 -0,92 1,809 0,805 0,047 -0,859 1,983

300 -0,565 1,036 0,461 0,028 -0,501 1,116

Commas represent decimal points.

TABLE 2.*

t , t2) el,> ___ "--
(60,80) 6 1418 62 1415

(60,300) 996 1418 33 393

(180,30U) 42 1358 29 1338

Commas represent decimal points

at 10 sec, the optimal prognosest. jo _,/ were calculated for

the corresponding times in hundreds of kilometers. The following

were taken as the initial numerical values:

oi =II71I03 Icu, o-02 3x03M g1 = =150xI03KH;

el= E 4 =0,00I; Gp=o,005; = =0 M.

The results of the numerical solution are summarized in Table 3,

where I, wl, w 2 are in meters per second, the components of the

vectors -' ,e , and , Br ,, ) are in hundreds of kilometers.

TABLE 3.*

(ti, t ) , W;, , . • 2 .

(60,180) 60,38,22 11710,-10230 4848,-3476 355,-17 455,1472

(60,300) 80,41,39 -11710,10230 -3183,4578 362,23 429,1460

180,300) 100,30,70 -11710,-10230 -5108,-7412 365,-37 437,1434

Commas represent decimal points.



We see from Table 3 that:

1) early trajectory correction with tl = 60 days and t2 = 180

days is energetically advantageous;

2) with increase of t2, the ratio wl/I decreases.

We note the suggestion in [11] of the necessity for a charac- /12

teristic velocity margin on the order of 100 - 300 m/sec for trajec-

tory correction in order to hit Jupiter. The time required to cal-

culate the optimal parameters for a single pair (tl, t2 ) (Table 3)

on the BESM-4 electronic computer was about 55 minutes.

In conclusion, the author wishes to thank Prof. P. E. El'yas-

berg and B. Ts. Bakhshiyana, Cand. of Phys. Math. Sci., for formu-

lating the problem, providing the initial numerical data, and their

continued interest in the present study.
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